Improvement of effort estimation accuracy in software projects using a feature selection approach
Authors
Abstract:
In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , and also the complexity of the models used for effort estimation are all reasons to use the methods mentioned. Therefore, in this article, a genetic algorithm has been used for feature selection in the field of software project effort estimation. This technique has been tested on well-known data sets. Implementation results indicate that the resulting subset, compared to the original data set, has produced better outcomes in terms of effort estimation accuracy. This article showed that genetic algorithms are ideal methods for selecting a subset of features and improving effort estimation accuracy.
similar resources
Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
full textType-2 Fuzzy Logic Approach To Increase The Accuracy Of Software Development Effort Estimation
predicting the effort of a successful project has been a major problem for software engineers the significance of which has led to extensive investigation in this area. One of the main objectives of software engineering society is the development of useful models to predict the costs of software product development. The absence of these activities before starting the project will lead to variou...
full textExperimental Evaluation of Algorithmic Effort Estimation Models using Projects Clustering
One of the most important aspects of software project management is the estimation of cost and time required for running information system. Therefore, software managers try to carry estimation based on behavior, properties, and project restrictions. Software cost estimation refers to the process of development requirement prediction of software system. Various kinds of effort estimation patter...
full textIncreasing the accuracy of software development effort estimation using projects clustering
Software development effort is one of the most important metrics that must be correctly estimated in software projects. Analogy-based estimation (ABE) and artificial neural networks (ANN) are the most popular methods used widely in this field. These methods suffer from inconsistent and irrelevant projects that exist in the software project datasets. In this paper, a new hybrid method is propose...
full textSecurity Factors in Effort Estimation of Software Projects
This contribution deals with problems related to an effort estimation of the software projects which are connected to the development of secured products. The aim of this contribution is to present an option of an effective consideration of the effort which is connected with the software products development. The FPA and COCOMO II methods for cost estimation are extended by the security factors...
full textexperimental evaluation of algorithmic effort estimation models using projects clustering
one of the most important aspects of software project management is the estimation of cost and time required for running information system. therefore, software managers try to carry estimation based on behavior, properties, and project restrictions. software cost estimation refers to the process of development requirement prediction of software system. various kinds of effort estimation patter...
full textMy Resources
Journal title
volume 2 issue 4
pages 31- 38
publication date 2016-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023